

HUAN IE

Ningbo Huanjie Electronics Co., Ltd
Meteorological Balloon Supplier from China
Simen Town,Yuyao,Zhejiang,China 315470 | www.meteorological-balloon.com| sales@meteorological-balloon.com | whatsapp/wechat/mobile:+86 13567448881

About us
ncorporated in 2006,Ningbo Huanjie Electronics Co., Ltd (Meteosky Technologies Limited)
is a leading and professional supplier in China of meteorological balloon, weather balloon and sounding balloon. We have exported our products to more than 40 countries, such as Russia, Kazakhstan, Lithuania, Ukraine, United Arab Emirates, Israel, Pakistan, India, Malaysia, South Korea, Italy, France, United States, Mexico, Colombia, Chile, South Africa, etc We offer a full range of meteorological balloon from 10 gram to 8000 gram which are widely used in weather forecast, target track in air force, near space national defence scientific research, mitigation, typhoon and hurricane detection, etc.

With a professional technical service term, we offer superior quality meteorological balloon. Our main model 350 gram balloon can rise up to $28-29 \mathrm{~km}$, and the average burst altitude can be 26 km (85000 ft). Our NSL series balloon can rise up to more than 40 km (130000 ft) which is the highest altitude in the world.

At present, we have following superior performance meteorological balloons in the world market: $300 \mathrm{~g} \sim 800 \mathrm{~g}$ (bursting altitude $22,000 \mathrm{~m} \sim 35,000 \mathrm{~m}$ with effective rate more than 90%); 1600 g and 2000g balloons (bursting altitude over $35,000 \mathrm{~m}$ with effective rate more than 90%), $3000 \mathrm{~g} / \mathrm{NSL}-40$ sounding balloon (bursting altitude over $40,000 \mathrm{~m}$ with effective rate more than 90%)
Why choose us? Full range of meteorological balloon from 10gram to 8000gram Professional technical service and power R\&D. 40km $\sim 50 \mathrm{~km}$ bursting altitude

Customer's Affirmation Excellent Pre and After Sales Service. Quick response to any correspondence Superior quality and good performance, especially for 350gram balloon s our first consideration. Every praise and affirmation from customers is the driving force for us to move forward
Attached is the graph illustrates bursting altitude of 350 gram weather balloon

Pilot balloon from 10 g to 140 g

200 g

What is a weather balloon?

Perfect performance of 350 gram meteorological balloon
Our 350gram meteorological balloon is widely used throughout the world with BEST performance. In most countries and regions, such as Africa, Centra and South America, the Middle East, West Asia, the average bursting altitude can approach about $29 \sim 30 \mathrm{~km}$ (payload: 250 g , free lift:within 900 g). In some countries, they are even considering using our 350 gram balloon instead of 400 gram balloon. With stable perfect performance of our 350gram balloon, high productive capacity (75000 pcs monthly), prompt after-sales service, we have won many tenders step by step from national Meteorological department and air force in the world.

350g

Weight: $350+35 \mathrm{~g}$
Color: natural
Material: Natural latex
verage Bursting Altitude 2 km
Neck Diameter: 4.1~4.7cm
Neck Length: 10~14cm Flaccid Body Length: $\geqslant 140 \mathrm{~cm}$

Average Bursting Altitude: 26 km lated Diameter. $\geqslant 89 \mathrm{~cm}$

Diameter at burst: $\geqslant 480 \mathrm{~cm}$
Climbing speed: $5 \mathrm{~m} / \mathrm{s} \sim 7 \mathrm{~m} / \mathrm{s}$ Payload: min

What is NSL meteorological balloon?
Rough climatic elements, such as rain, snow, freezing, strong wind, high humidity layer ($3000-10000 \mathrm{~m}$) all affect the rising of a weather balloon. Through a special formula, our NSL balloon series are designed to assure it can even rise up to $40 \mathrm{~km} \sim 50 \mathrm{~km}$ (near space) altitude, the balloon is made up of double-layer structure in one neck, the master balloon(inner balloon) is covered by an auxiliary one(outer balloon), when rising, the auxiliary balloon can protect the master one from these extreme rough weather elements so that the master balloon can rise up o a desired high altitude and the effective rate of bursting altitude can be more than 90\%

How to handle the balloon?
Storage:

If a balloon launcher is not used, a special and well ventilated room, preferably isolated.If hydrogen gas is to be used, special safety precautions are essential .The building should be free from any source of sparks, and all electric switches and fittings should be spark-proof. If helium gas is to be used, provision may be made for heating the building during cold weather. The walls, doors and floor should have a smooth finish and should be kept free from dust and grit. Heating hydrogen-inflation areas can be accomplished by steam, hot water or any other indirect means; however, electric heating.
Protective clothing should be worn during inflation. The operator should not stay in a closed room with a balloon containing hydrogen. The hydrogen supply should be controlled and the filling operation observed, from outside the filling room if the doors are shut, and the doors should be open when the operator is in the room with the balloon.
Meteorological Balloons should be inflated slowly because sudden expansion may cause weak spots in the balloon film. It is desirable to provide a fine adjustment valve for regulating the gas flow. The desired amount of inflation (free lift) can be determined by using either a filling nozzle of the required weight or one which forms one arm of a balance on which the balloon lift can be weighed. The latter is less convenient, unless it is desirable to allow for variations in the weights of balloons, which is hardly necessary for routine work. It is useful to have a valve fitted to the weight type of the filler, and a further refinement, used in some services, is to have a valve that can be adjusted to close automatically at the required lift.
Launching The balloon should be kept under a shelter until everything is ready for its launch. Prolonged exposure to bright sunshine should be avoided as this may cause a rapid deterioration of the balloon fabric and may even result in its bursting before leaving the ground. Protective clothing should be worn during manual launches.
No special difficulties arise when launching radiosonde balloons in light winds. Care should always be taken to see that there is no risk of the balloon and instruments striking obstructions before they rise clear of trees and buildings in the vicinity of the station.
Release problems can be avoided to a large extent by carefully planning the release area. It should be selected to have a minimum of obstructions that may interfere with launching; the station buildings should be designed and sited considering the prevailing wind, likely gust effects on the release area and, in cold climates, drifting snow. It is also advisable in high winds to keep the suspension of the instrument below the balloon as short as possible during launching, by using some form of suspension release or unwinder. A convenient device consists of a reel on which the suspension cord is wound and a spindle to which is attached an air brake or escapement mechanism that allows the suspension cord to unwind slowly after the balloon is released
Mechanical balloon launchers have the great advantage that they can be designed to offer almost fool-proof safety, by separating the operator from the balloon during filling and launching. They can be automated to various degrees, even to the point where the whole radiosonde operation requires no operator to be present. They might not be effective at wind speeds above $20 \mathrm{~m} \mathrm{~s}-1$. Provision should be made for adequate ventilation of the radiosonde sensors before release, and the construction should desirably be such that the structure will not be damaged by fire or explosion.

